Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Richard Gilardi,^a* Ray J. Butcher^b and A. Bashir-Hashemi^c

^aLaboratory for the Structure of Matter, Naval Research Laboratory, Washington DC 20375, USA, ^bDepartment of Chemistry, Howard University, Washington DC 20059, USA, and ^cFluorochem, Inc., 680 S. Ayon Avenue, Azusa, CA 91702, USA

Correspondence e-mail: gilardi@nrl.navy.mil

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.110 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4,7-Dichlorotricyclo[3.1.1.0^{3,6}]heptane-2-carboxylic acid

The structure of the carboxylic acid derivative of the new substituted open-cage system, 4,7-dichlorotricyclo[$3.1.1.0^{3.6}$]-heptane-2-carboxylic acid, C₈H₈Cl₂O₂, shows that the carboxyl C atom has close contacts with C atoms of the cage system. Hydrogen bonds from the carboxylic acid functional groups of adjoining molecules form centrosymmetric dimers.

Comment

There is much current interest in the use of tetrahedrally substituted cubanes in the areas of combinatorial chemistry (Carrell *et al.*, 1994), materials (Chen *et al.*, 1997), and explosives (Eaton *et al.*, 1993; Lukin *et al.*, 1996; Bashir-Hashemi, Iyer *et al.*, 1995; Bashir-Hashemi & Doyle, 1996). In addition, there has been a recent report of another substituted cage system, tricycloheptane (norcubane) (Bashir-Hashemi *et al.*, 1997), obtained from the reaction of 1,4-disubstituted amidocubanes with oxalyl chloride (Bashir-Hashemi, 1993; Bashir-Hashemi, Li *et al.*, 1995).

One of these derivatives, the title compound, 4,7-dichlorotricyclo[3.1.1.0^{3,6}]heptane-2-carboxylic acid, (I) (Bashir-Hashemi et al., 1997), was obtained from the reaction of 1,4-disubstituted amidocubanes with oxalyl chloride giving 4-(4,7-dichlorotricyclo[3.1.1.0^{3,6}]hept-2-yl)-5-[bis(methylethyl)amino]-2,2-dichloro-2-hydrofuran-3-one. The dichloro-2hydrofuran-3-one was converted to a carboxy group by ozonolysis, followed by acid hydrolysis of the resulting ester. Norcubanes are related to cubanes through the loss of one C-H corner, leaving an open rather than a closed cage system, which should be amenable to further substitution reactions. Compound (I) shows the same substitution pattern as previously observed in these derivatives (Bashir-Hashemi et al., 1997). Similarly, the distances from the carboxyl C atom to opposite corners of the cage (C4 and C7) are 3.136 and 3.132 Å; these are shorter than the non-bonded van der Waals contact distance, which usually ranges from 3.20 to 3.40 Å. This close proximity of both C4 and C7 to C could lead to the construction of desirable molecules, such as azacubanes, by reconstructing the cube corner through a condensation reaction. Compound (I) forms centrosymmetrically linked dimers through hydrogen-bonding interactions of the carboxylic acid groups of adjoining molecules.

Received 27 June 2002 Accepted 11 July 2002 Online 19 July 2002

© 2002 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are represented by circles of arbitrary size.

Experimental

Crystals of (I) were obtained by slow evaporation of a methanolic solution of the title compound (m.p. 417–418 K; yield 41%).

Crystal data

$C_8H_8Cl_2O_2$	$D_x = 1.545 \text{ Mg m}^{-3}$
$M_r = 207.04$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 786
a = 21.497 (7) Å	reflections
b = 9.036 (3) Å	$\theta = 2.3 - 28.1^{\circ}$
c = 10.084(3) Å	$\mu = 0.68 \text{ mm}^{-1}$
$\beta = 114.673(6)^{\circ}$	T = 294 (2) K
$V = 1779.9 (10) \text{ Å}^3$	Irregular plate, colourless
Z = 8	$0.42 \times 0.40 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART 1K CCD area-	1822 independent reflections
detector diffractometer	1512 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.027$
Absorption correction: by integra-	$\theta_{\rm max} = 26.4^{\circ}$
tion (Wuensch & Prewett, 1965)	$h = -24 \rightarrow 26$
$T_{\rm min} = 0.740, T_{\rm max} = 0.935$	$k = -11 \rightarrow 6$
5852 measured reflections	$l = -12 \rightarrow 9$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.110$ S = 1.041822 reflections 140 parameters All H-atom parameters refined

 $w = 1/[\sigma^2(F_o^2) + (0.0521P)^2]$ + 1.6743P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.053$ $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Figure 2 The molecular packing of (I), viewed along the b axis.

Table 1 Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1O\cdots O2^{i}$	0.74 (4)	1.90 (4)	2.636 (3)	173 (4)
Symmetry code: (i) $\frac{3}{2}$	$-x, \frac{1}{2}-y, 2-z$			

All H atoms were initially located in a difference Fourier map and were refined isotropically.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SHELXTL (Bruker, 2001); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Office of Naval Research, Mechanics Division. RJB acknowledges the ASEE/Navy Summer Faculty Research Program for support during the summer of 2002. ABH acknowledges that the original synthetic work was performed at ARDEC, Picatinney Arsenal, New Jersey.

References

- Bashir-Hashemi, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 612-613.
- Bashir-Hashemi, A. & Doyle, G. (1996). Aldrichimica Acta, 29, 43-49.
- Bashir-Hashemi, A., Gelber, N. & Gilardi, R. (1997). Tetrahedron Lett. 38, 8137-8140.
- Bashir-Hashemi, A., Iyer, S., Alster, J. & Slagg, N. (1995). Chem. Ind. (London), 14, 551-555.
- Bashir-Hashemi, A., Li, J., Gelber, N. & Ammon, H. (1995). J. Org. Chem. 60, 698-702
- Bruker (2001). SMART (Version 5.624) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Carrell, T., Wintner, E. A., Bashir-Hashemi, A. & Rebek, J. Jr (1994). Angew. Chem. Int. Ed. Engl. 33, 2059-2061.
- Chen, S. H., Mastrangelo, J. C., Shi, H., Blanton, T. N. & Bashir-Hashemi, A. (1997). Macromolecules, 30, 93-97.
- Eaton, P. E., Xiong, Y. & Gilardi, R. (1993). J. Am. Chem. Soc. 115, 10195-10202.
- Lukin, K., Li, J., Gilardi, R. & Eaton, P. E. (1996). Angew. Chem. Int. Ed. Engl. 35, 864-866.

Wuensch, B. & Prewett, C. (1965). Z. Kristallogr. 122, 24-59.